170 research outputs found

    Methodology of combined aplpication of directional derivatives and the extended finite element method (X-FEM) for solving vibrations eigenvalue problems

    Get PDF
    International audienceThis paper presents a new methodology for solving the eigenvalue problem for time dependent structures. The time dependent structures of interest are structures with a moving discontinuity such as crack or structures with moving free (external/internal) surfaces. For the last case, they can result from a removal of material during a machining process or from a deterioration of the structure’s geometry. The methodology that we developed, is based on a combination of the eXtended Finite Element Method (X-FEM) and the Directional Derivatives method. X-FEM enables to overcome the drawbacks of conformity and remeshing: indeed, using standard FEM, a moving discontinuity in time within a structure requires not only that the mesh must conform to the discontinuity geometry but also to fully remesh the structure as much as necessary to follow the discontinuity in time. In order to alleviate this last point, the directional derivatives are a powerful tool because they allow to estimate the evolution of quantities from on reference domain to another one. In our case, they will allow to estimate the solutions of the eigenvalue problem. We suggest on the first sections to remind the main keys of both methods and we present then the combined methods in order to solve an eigenvalue problem. The application will be done on a one-dimensional eigenvalue problem and the numerical results will be presented to demonstrate the accuracy and the advantages of selected approaches. We conclude on the future prospects of the current work that mainly consist of to develop the methodology at the second order in order to increase the accuracy and to find a criteria in order to automatize the combined methods

    A Variant Mimicking Hyperphosphorylated 4E-BP Inhibits Protein Synthesis in a Sea Urchin Cell-Free, Cap-Dependent Translation System

    Get PDF
    BACKGROUND: 4E-BP is a translational inhibitor that binds to eIF4E to repress cap-dependent translation initiation. This critical protein:protein interaction is regulated by the phosphorylation of 4E-BP. Hypophosphorylated 4E-BP binds to eIF4E and inhibits cap-dependent translation, whereas hyperphosphorylated forms do not. While three 4E-BP proteins exist in mammals, only one gene encoding for 4E-BP is present in the sea urchin genome. The protein product has a highly conserved core domain containing the eIF4E-binding domain motif (YxxxxLPhi) and four of the regulatory phosphorylation sites. METHODOLOGY/PRINCIPAL FINDINGS: Using a sea urchin cell-free cap-dependent translation system prepared from fertilized eggs, we provide the first direct evidence that the sea urchin 4E-BP inhibits cap-dependent translation. We show here that a sea urchin 4E-BP variant, mimicking phosphorylation on four core residues required to abrogate binding to eIF4E, surprisingly maintains physical association to eIF4E and inhibits protein synthesis. CONCLUSIONS/SIGNIFICANCE: Here, we examine the involvement of the evolutionarily conserved core domain and phosphorylation sites of sea urchin 4E-BP in the regulation of eIF4E-binding. These studies primarily demonstrate the conserved activity of the 4E-BP translational repressor and the importance of the eIF4E-binding domain in sea urchin. We also show that a variant mimicking hyperphosphorylation of the four regulatory phosphorylation sites common to sea urchin and human 4E-BP is not sufficient for release from eIF4E and translation promotion. Therefore, our results suggest that there are additional mechanisms to that of phosphorylation at the four critical sites of 4E-BP that are required to disrupt binding to eIF4E

    Vers une modélisation du comportement de la cavité pelvienne

    Get PDF
    L'incidence du prolapsus pelvien atteint une femme sur trois tous âges confondus, et plus de 60% des patientes de plus de 60 ans. La prise en charge chirurgicale de cette pathologie devient une préoccupation première en gynécologie. Malheureusement, le taux d'échec des différentes techniques opératoires est de l'ordre de 40%. Ces récidives seraient attribuées à une mauvaise adéquation entre le choix de la technique et la pathologie et/ou à l'utilisation de tissu mécaniquement déficient dans les montages chirurgicaux de soutien. La modélisation et la simulation du comportement de la cavité pelvienne seraient une méthode d'évaluation objective et spécifique des troubles de la statique pelvienne et des différentes techniques opératoires. Les premières étapes de réalisation de ce modèle ont été élaborées. La caractérisation des tissus pelviens impliqués en statique pelvienne a été réalisée à partir d'essais de traction uni-axiale. Les conditions aux limites ont été définies à partir d'imagerie dynamique du pelvis et un modèle numérique est en cours d'élaboration

    High-sensitivity versus conventional troponin in the emergency department for the diagnosis of acute myocardial infarction

    Get PDF
    International audienceINTRODUCTION: Recently, newer assays for cardiac troponin (cTn) have been developed which are able to detect changes in concentration of the biomarker at or below the 99th percentile for a normal population. The objective of this study was to compare the diagnostic performance of a new high-sensitivity troponin T (HsTnT) assay to that of conventional cTnI for the diagnosis of acute myocardial infarction (AMI) according to pretest probability (PTP). METHODS: In consecutive patients who presented to our emergency departments with chest pain suggestive of AMI, levels of HsTnT were measured at presentation, blinded to the emergency physicians, who were asked to estimate the empirical PTP of AMI. The discharge diagnosis was adjudicated by two independent experts on the basis of all available data. RESULTS: A total of 317 patients were included, comprising 149 (47%) who were considered to have low PTP, 109 (34%) who were considered to have moderate PTP and 59 (19%) who were considered to have high PTP. AMI was confirmed in 45 patients (14%), 22 (9%) of whom were considered to have low to moderate PTP and 23 (39%) of whom were considered to have high PTP (P < 0.001). In the low to moderate PTP group, HsTnT levels ≥ 0.014 μg/L identified AMI with a higher sensitivity than cTnI (91%, 95% confidence interval (95% CI) 79 to 100, vs. 77% (95% CI 60 to 95); P = 0.001), but the negative predictive value was not different (99% (95% CI 98 to 100) vs. 98% (95% CI 96 to 100)). There was no difference in area under the receiver operating characteristic (ROC) curve between HsTnT and cTnI (0.93 (95% CI 0.90 to 0.98) vs. 0.94 (95% CI 0.88 to 0.97), respectively). CONCLUSIONS: In patients with low to moderate PTP of AMI, HsTnT is slightly more useful than cTnI. Our results confirm that the use of HsTnT has a higher sensitivity than conventional cTnI

    The genomic repertoire for cell cycle control and DNA metabolism in S. purpuratus

    Get PDF
    A search of the Strongylocentrotus purpuratus genome for genes associated with cell cycle control and DNA metabolism shows that the known repertoire of these genes is conserved in the sea urchin, although with fewer family members represented than in vertebrates, and with some cases of echinoderm-specific gene diversifications. For example, while homologues of the known cyclins are mostly encoded by single genes in S. purpuratus (unlike vertebrates, which have multiple isoforms), there are additional genes encoding novel cyclins of the B and K/L types. Almost all known cyclin-dependent kinases (CDKs) or CDK-like proteins have an orthologue in S. purpuratus; CDK3 is one exception, whereas CDK4 and 6 are represented by a single homologue, referred to as CDK4. While the complexity of the two families of mitotic kinases, Polo and Aurora, is close to that found in the nematode, the diversity of the NIMA-related kinases (NEK proteins) approaches that of vertebrates. Among the nine NEK proteins found in S. purpuratus, eight could be assigned orthologues in vertebrates, whereas the ninth is unique to sea urchins. Most known DNA replication, DNA repair and mitotic checkpoint genes are also present, as are homologues of the pRB (two) and p53 (one) tumor suppressors. Interestingly, the p21/p27 family of CDK inhibitors is represented by one homologue, whereas the INK4 and ARF families of tumor suppressors appear to be absent, suggesting that these evolved only in vertebrates. Our results suggest that, while the cell cycle control mechanisms known from other animals are generally conserved in sea urchin, parts of the machinery have diversified within the echinoderm lineage. The set of genes uncovered in this analysis of the S. purpuratus genome should enhance future research on cell cycle control and developmental regulation in this model

    Emerging horizons for tick-borne pathogens: from the ‘one pathogen–one disease’ vision to the pathobiome paradigm

    Get PDF
    Ticks as vectors of several notorious zoonotic pathogens, represent an important and increasing threat for human, animal health in Europe. Recent application of new technology revealed the complexity of the tick microbiome that might impact upon its vectorial capacity. Appreciation of these complex systems is expanding our vision of tick-borne pathogens leading us to evolve a more integrated view that embraces the “pathobiome” representing the pathogenic agent integrated within its abiotic and biotic environments. In this review, we will explore how this new vision will revolutionize our understanding of tick-borne diseases. We will discuss the implications in terms of research approach for the future in order to efficiently prevent and control the threat posed by ticks

    RTM3

    Full text link
    Restriction of long-distance movement of several potyviruses in Arabidopsis (Arabidopsis thaliana) is controlled by at least three dominant restricted TEV movement (RTM) genes, named RTM1, RTM2, and RTM3. RTM1 encodes a protein belonging to the jacalin family, and RTM2 encodes a protein that has similarities to small heat shock proteins. In this article, we describe the positional cloning of RTM3, which encodes a protein belonging to an undescribed protein family of 29 members that has a meprin and TRAF homology (MATH) domain in its amino-terminal region and a coiled-coil domain at its carboxy-terminal end. Involvement in the RTM resistance system is the first biological function experimentally identified for a member of this new gene family in plants. Our analyses showed that the coiled-coil domain is not only highly conserved between RTM3-homologous MATH-containing proteins but also in proteins lacking a MATH domain. The cluster organization of the RTM3 homologs in the Arabidopsis genome suggests the role of duplication events in shaping the evolutionary history of this gene family, including the possibility of deletion or duplication of one or the other domain. Protein-protein interaction experiments revealed RTM3 self-interaction as well as an RTM1-RTM3 interaction. However, no interaction has been detected involving RTM2 or the potyviral coat protein previously shown to be the determinant necessary to overcome the RTM resistance. Taken together, these observations strongly suggest the RTM proteins might form a multiprotein complex in the resistance mechanism to block the long-distance movement of potyviruses
    corecore